Dynein Associates with oskar mRNPs and Is Required For Their Efficient Net Plus-End Localization in Drosophila Oocytes

نویسندگان

  • Paulomi Sanghavi
  • Shobha Laxani
  • Xuan Li
  • Simon L. Bullock
  • Graydon B. Gonsalvez
چکیده

In order for eukaryotic cells to function properly, they must establish polarity. The Drosophila oocyte uses mRNA localization to establish polarity and hence provides a genetically tractable model in which to study this process. The spatial restriction of oskar mRNA and its subsequent protein product is necessary for embryonic patterning. The localization of oskar mRNA requires microtubules and microtubule-based motor proteins. Null mutants in Kinesin heavy chain (Khc), the motor subunit of the plus end-directed Kinesin-1, result in oskar mRNA delocalization. Although the majority of oskar particles are non-motile in khc nulls, a small fraction of particles display active motility. Thus, a motor other than Kinesin-1 could conceivably also participate in oskar mRNA localization. Here we show that Dynein heavy chain (Dhc), the motor subunit of the minus end-directed Dynein complex, extensively co-localizes with Khc and oskar mRNA. In addition, immunoprecipitation of the Dynein complex specifically co-precipitated oskar mRNA and Khc. Lastly, germline-specific depletion of Dhc resulted in oskar mRNA and Khc delocalization. Our results therefore suggest that efficient posterior localization of oskar mRNA requires the concerted activities of both Dynein and Kinesin-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An RNA-binding tropomyosin recruits kinesin-1 dynamically to oskar mRNPs

Localization and local translation of oskar mRNA at the posterior pole of the Drosophila oocyte directs abdominal patterning and germline formation in the embryo. The process requires precise recruitment and regulation of motor proteins to form transport-competent mRNPs. Using high-and super-resolution imaging, we determine the steps in motor recruitment to oskar mRNPs. We show that the posteri...

متن کامل

An RNA‐binding atypical tropomyosin recruits kinesin‐1 dynamically to oskar mRNPs

Localization and local translation of oskar mRNA at the posterior pole of the Drosophila oocyte directs abdominal patterning and germline formation in the embryo. The process requires recruitment and precise regulation of motor proteins to form transport-competent mRNPs. We show that the posterior-targeting kinesin-1 is loaded upon nuclear export of oskar mRNPs, prior to their dynein-dependent ...

متن کامل

Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes.

Mass movements of cytoplasm, known as cytoplasmic streaming, occur in some large eukaryotic cells. In Drosophila oocytes there are two forms of microtubule-based streaming. Slow, poorly ordered streaming occurs during stages 8-10A, while pattern formation determinants such as oskar mRNA are being localized and anchored at specific sites on the cortex. Then fast well-ordered streaming begins dur...

متن کامل

Posterior Localization of Dynein and Dorsal-Ventral Axis Formation Depend on Kinesin in Drosophila Oocytes

To establish the major body axes, late Drosophila oocytes localize determinants to discrete cortical positions: bicoid mRNA to the anterior cortex, oskar mRNA to the posterior cortex, and gurken mRNA to the margin of the anterior cortex adjacent to the oocyte nucleus (the "anterodorsal corner"). These localizations depend on microtubules that are thought to be organized such that plus end-direc...

متن کامل

Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte.

Microtubules and the Kinesin heavy chain, the force-generating component of the plus end-directed microtubule motor Kinesin I are required for the localisation of oskar mRNA to the posterior pole of the Drosophila oocyte, an essential step in the determination of the anteroposterior axis. We show that the Kinesin heavy chain is also required for the posterior localisation of Dynein, and for all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013